VOL-I* ISSUE- VIII* November- 2016 Remarking An Analisation

(1.3)

On The Integrability Conditions of the F-Structure Satisfying $F^3 + F^2 + F = 0$

Lakhan Singh Assistant Professor, Deptt.of Mathematics, D.J. College, Baraut Baghpat

Abstract

The purpose of this paper is to study various properties of the structure equation $F^3 + F^2 + F = 0$. The integrability conditions have also been discussed.

Keywords: Differentiable Manifold, Projection Operators and Their Tangent Bundles, Integrability Constions, Nijenhuis Tensors, Cyclic and Non-Simple Group.

Introduction

Le V_n be a C^{∞} difference manifold and F be a C^{∞} (1,1) tensor defined on V_n such that (1. 1) $F^3 + F^2 + F = 0$.

We define the operators I and m on V_n by (1.2) I=F³, m=I-F³ Where I is the identity operator

From (1. 1) and (1.2) we have

 $l+m=l, l^2=l, m^2=m, lm=ml=0$

FI=IF=F, Fm=mF=0

Let

 $(M_6=\{m-F^3, m-F^2, m-F, m+F, m+F^2, m+F^3\}$ (1.4)Theorem (1.1)

The set defined by (1.4) is a cyclic and non-simple group under product of operators

Proof

Using (1.1),(1.2), (1.3) and (1.4). We have the cayley table for M₆ (1.5)

	m-F ³	m-F ²	m-F	m+F	m+F ²	m+F ³
m-F ³	$m+F^3$	m+F ²	m+F	m-F	m+F ²	m-F ³
m-F ²	m+F ²	m+F	$m+F^3$	m-F ³	m-F	m-F ²
m-F	m+F	$m+F^3$	m+F ²	m-F ²	m-F ³	m-F
m+F	m-F	m-F ³	m-F ²	$m+F^2$	m+F ³	m+F
m+F ²	$m-F^2$	m-F	m-F ³	$m+F^3$	m+F	m+F ²
m+F ³	m-F ³	$m-F^2$	m-F	m+F	m+F ²	m+F ³

From the table (1.5) we observed that M₆ is closed under multiplication of operators. Associative property is obviously satisfied. M+F³ acts as identity operator. Also

(1.6)

$$(m-F^3)^{-1} = m-F^3$$

 $(m-F^2)^{-1} = m-F$

$$(m-F^{2})^{-1} = m-F$$

 $(m+F)^{-1} = m+F^{2}$

 $(m+F^3)^{-1} = m+F^3$

and M_6 is a cyclic group generated by m-F or m-F². Since M₆ has a proper normal subgroups $\{m-F^3, m+F^3\}$, consequently M₆ is not a simple group.

Nijenhuis Tensor

Let N_m denotes the Nijenhuis tensor corresponding to the operator m. then

$$\begin{split} N_m & (X, Y) = [mX, mY] + m^2 [X, Y] - m [mX, Y] - m [X, m Y] \ (2.1) \\ & \text{Theorem (2.1) for the Nijenhuis tensor } ^N_m \text{ defined by (2.1), we} \end{split}$$

have

1.
$$\sum_{N=1}^{N} (IX, IY) = m [IX, IY]$$
 (2.2)

2.
$$\sum_{N=1}^{N} (IX, mY) = 0$$

3.
$$\prod_{N=1}^{N} (mX, IY) = 0$$

4. $^{N}_{m}$ (mX, mY) = I[mX, mY]

Proof

using (1.3) and (2.1), we have

 ${}^{N}_{m}$ (IX, IY) = [mIX, mIY] + ${}^{m}^{2}$ [IX, IY] – m [mIX, IY] – m [IX, mIY] (2.3)= m[IX, IY]

Proceeding similarly the other parts follow.

P: ISSN NO.: 2394-0344

E: ISSN NO.: 2455-0817

Integrability Conditions

Let I* and m* denote the tangent bundles associated with the complementary projection operators I and m respectively, then

Theorem (3.1)I* is integrable if and only if $_{m}^{N}$ (IX, IY) = 0 (3.1)

Proof

I* is integrable if and only if

mX = 0 for X = IX

(dm) (IX, IY) = 0, simplifying it m[IX, IY] = 0(3.2)From (2.2) (i) and (3.2), we get (3.1) Theorem (3.2) m* is integrable if and only if $_{m}^{N}$ (mX, mY) = 0 (3.3)

Proof

m* is integrable if and only if IX = 0 for X = mX(dl) (mX, mY) = 0, simplifying it I[mX, mY] = 0(3.4)From 2.2) (iv) and (3.4), we get (3.3)Theorem (3.3) The differentiable manifold V_n regarded as the sum of I* and m* is integrable if and only if (3.5)

 $_{m}^{N}(X, Y) = 0$ Proof

using (1.3) and bilinearity of ^N_m, we have $^{N}_{m}(X, Y) = ^{N}_{m}(IX + mX, IY + mY)$ $HmX, IY + mY) (3.6) = {n \choose m} (IX, IY) + {n \choose m} (IX, mY) + {n \choose m} (mX, mX)$ IY) + $^{N}_{m}$ (mX, mY)

VOL-I* ISSUE- VIII* November- 2016 Remarking An Analisation

Uşing (2.2) (ii), (iii)

 $^{N}_{m}(X, Y) = ^{N}_{m}(IX, IY) + ^{N}_{m}(mX, mY)$ (3.7)

From theorems (3.1) and (3.2) and (3.7), V_n is integrable if and only if ${}^N_m(X, Y) = 0$

Aim of Study

The integrability condition of $F^3 + F^2 + F = 0$.

Conclusion

The given structure is integrable if and only if $^{N}m(X, Y) = 0.$

Reference

- T.P. Andelic (1952) : Tensor calculus, naucna 1. knjiga Belgrade.
- L.Brand (1947) : Vector and tensor analysis, John 2 Wiley and Sons, New York.
- 3. N.J. Hicks (1965): Notes on differentioal geometry, Van Nostrand Co. Inc. Princeton
- 4. C.J. Hsu (1960): Notes on the integrability of certain structure on differentable manifold, Tohoku Math,. J. 12, 349-360
- R.S. Mishra (1972): Integrability conditions of an 5. almost contact manifold, Tensor, N.S., 2, 211-216.
- Ram Nivas and Surendra Yadav (2012): On CR 6. structure and $F_{\lambda}(2V+3,2)$ –Hsu-stucture statisfying $F^{2v+3}+\lambda^r F^2=0$, Acta Ciencia Indica, Vol. XXXVIIIM, No. 4, 645.